Sustainability in Indian Cement Industry - Challenges and Avenues

Dr.S.B.Hegde, Udaipur Cement Works Limited, Udaipur, Rajasthan

Sustainability in Indian Cement Industry - Challenges and Avenues

Cement is the most used industrial commodity required for development, but it is also responsible for high GHG emissions; so there is a need to create a balance between the nation’s growth and environment sustainability.

In 2018-2019, India had an annual cement consumption of 337 million tons, which is expected to increase up to 550 million tons by 2025. The major cement consuming sectors are housing and real estate (65%), infrastructure (25%), and commercial and industrial development (10%). This increase is attributed to various developmental schemes launched by the Government of India, including the Smart City Mission, Housing for All, Bharatmala Pariyojana, Pradhan Mantri Gram Sadak Yojana, Urban Transport Metro Rail Projects, etc.

Aided by suitable government foreign policies, several foreign players such as Lafarge-Holcim, Heidelberg Cement, and Vicat have invested in the country in the recent past. The per-capita consumption of cement in India is 240 kg, which is well below the global consumption of 530 kg (DIPP, 2020). This signifies that there is a huge economic opportunity to cater to the unmet demand in future.

Operational Parameters of Indian Plants
Average “specific heat consumption” and average “specific energy consumption” in the Indian cement industry is 3.1 GJ/tonne of clinker and 80 kWh/tonne of cement, respectively, which is lesser than the global average of 3.5 GJ/tonne of clinker and 91 kWh/tonne of cement, respectively. Despite this, a noteworthy progress by the Indian cement industry is in enhancing energy efficiency, though GHG emissions from the cement sector are still significantly high at 187 million tons of CO2e (in 2015-16).

Challenges and Avenues
This rising demand for cement also associates with it the environment damaging greenhouse gas (GHG) emissions. The cement industry alone is responsible for 8% of the total national emissions. These emissions are a product of electricity usage, combustion of fossil fuel and the calcination of limestone, which accounts for 13%, 31%, and 56%, respectively. The CO2 emission intensity of the Indian cement industry in 2018 was 576 kg CO2/ton of cement produced whereas the global average is 634 kgCO2/ton of cement produced.

As per the International Energy Agency (IEA) and WBCSD, emerging and innovative technologies, namely carbon capture and storage (CCS), renewable energy, have 48% emission reduction potential. Of late, renewable energy is gaining momentum.

Reduction in the clinker to cement ratio has the second-highest emission reduction potential (37%). This is being considered as a high priority now, as this not only reduces direct thermal emissions but also the process emissions, which contribute highly to the overall emissions from the cement industry and cannot be addressed through energy efficiency (EE) measures. There has been some progress in terms of identifying new alternate materials with lower clinker content and which, therefore, hold a bigger responsibility for India in the near future.

Circular Economy Concept - Usage of Alternate Fuels: Alternate fuels and EE have a CO2 reduction potential of 12% and 3%, respectively, which is very less as compared to the other two options. In recent years, the Indian cement industry has started using alternative fuels to further cut down emissions. The amount of alternative fuel used by the cement industry is defined by Thermal Substitution Rate (TSR), which refers to the percentage of alternative fuel used to replace fossil fuels. From the TSR level of 4% in 2016 (it was 0.6% in 2010), the Indian cement industry targets to achieve 25% TSR by 2025 and 30% by 2030.

With the use of circular economy principles (like use of SCMs, utilisation of construction and demolition waste through technologies like Smart Crusher) and design optimisation techniques (like bubble deck/voided concrete slab systems, confined masonry, and use of timber) the demand of cement can be optimised in the upcoming construction activities.

Renewable Energy: On the other hand, regarding the EE lever, most of the energy-efficient technologies are already implemented in the cement industry, leaving very little potential for decarbonisation. Additionally, to realise the leftover potential in EE, various interventions like waste heat recovery (WHR), installation of high energy efficient coolers, grinding systems, and the use of variable frequency drive (VFD) in process fans etc. are being implemented in indicant plants.

On one hand, cement is the most used industrial commodity required for development, but on the other hand it is also responsible for high GHG emissions. Therefore, there is a need to create a balance between the nation’s growth and environment sustainability. Moreover, to achieve climate change mitigation targets, in-line with the Paris Agreement, which attempts to limit the global temperature increase by 2°C at the end of this century, there is an urgent need to explore other opportunities (beyond energy efficiency) to limit GHG emissions from India’s cement industry.

Of late, a lot of research and development has taken place to develop low carbon cement alternatives like LC3, geopolymer binders, belite rich cements, and other novel cement formulations. Out of these options, LC3 and Geopolymer concrete have significant potential for emission reduction and are in the final stages of development in India.

To enable this transition there is a need for all stakeholders to come together and take up activities, including pilots, policy interventions as well as raising the awareness of these options to reduce emissions from the hard-pressed sector.

(The author is a Domain Expert in Cement in International Bodies, Mumbai).
NBM&CW May 2021
Accelerated Building & Bridge Construction with UHPC

Accelerated Building & Bridge Construction with UHPC

UHPC, which stands for Ultra High-Performance Concrete, is a testament to the ever-evolving panorama of construction materials, promising unparalleled strength, durability, and versatility; in fact, the word concrete itself is a misnomer

Read more ...

Innovative Approaches Driving Sustainable Concrete Solutions

Innovative Approaches Driving Sustainable Concrete Solutions

This paper explores the evolving landscape of sustainable concrete construction, focusing on emerging trends, innovative technologies, and materials poised to reshape the industry. Highlighted areas include the potential of green concrete

Read more ...

GGBS: Partial Replacement Of Cement For Developing Low Carbon Concrete

GGBS: Partial Replacement Of Cement For Developing Low Carbon Concrete

Dr. L R Manjunatha, Vice President, and Ajay Mandhaniya, Concrete Technologist, JSW Cement Limited, present a Case Study on using GGBS as partial replacements of cement for developing Low Carbon Concretes (LCC) for a new Education University

Read more ...

Behaviour of Ternary Concrete with Flyash & GGBS

Behaviour of Ternary Concrete with Flyash & GGBS

Evaluating the performance of concrete containing Supplementary Cementitious Materials (SCM) like FlyAsh and Ground Granulated Blast Furnace Slag (GGBS) that can be used in the production of long-lasting concrete composites.

Read more ...

Nanospan’s Spanocrete®: nano-admixture for concrete

Nanospan’s Spanocrete®: nano-admixture for concrete

Nanospan’s Spanocrete, a Greenpro-certified, award- winning, groundbreaking nano-admixture for concrete, actualizes the concept of “durability meets sustainability”. This product simplifies the production of durable concrete, making it cost-effective

Read more ...

The Underwater Concrete Market in India

The Underwater Concrete Market in India

India, with its vast coastline and ambitious infrastructural projects, has emerged as a hotspot for the underwater concrete market. This specialized sector plays a crucial role in the construction of marine structures like bridges, ports

Read more ...

The Path to Enhanced Durability & Resilience of Concrete Structures

The Path to Enhanced Durability & Resilience of Concrete Structures

This article highlights a comprehensive exploration of the strategies, innovations, and practices for achieving concrete structures that not only withstand the test of time but also thrive in the face of adversity.

Read more ...

Self-Curing Concrete for the Indian Construction Industry

Self-Curing Concrete for the Indian Construction Industry

The desired performance of concrete in the long run depends on the extent and effectiveness of curing [1 & 2]. In the Indian construction sector, curing concrete at an early age is a problematic issue because of lack of awareness or other

Read more ...

BigBloc Construction an emerging leader in AAC Block

BigBloc Construction an emerging leader in AAC Block

Incorporated in 2015, BigBloc Construction Ltd is one of the largest and only listed company in the AAC Block space with an installed capacity of 8.25 lakh cbm per annum. The company’s manufacturing plants are located in Umargaon

Read more ...

Decarbonizing Cement Industry: Sustainable & Energy-Efficient Measures

Decarbonizing Cement Industry: Sustainable & Energy-Efficient Measures

Dr. L R Manjunatha (VP), Manoj Rustagi (Chief Sustainability & Innovation Officer), Gayatri Joshi (ASM), and Monika Shrivastava (Head of Sustainability) at JSW Cement Limited, discuss new approaches for Decarbonizing the Cement

Read more ...

Concrete Rheology: Technology to Describe Flow Properties of Concrete

Concrete Rheology: Technology to Describe Flow Properties of Concrete

Concrete is a heterogeneous composite complex material, and its hardened property is influenced by its fresh property. Concrete today has transformed into an advanced type with new and innovative ingredients added - either singly or in

Read more ...

Amazecrete ICRETE: Making Concrete Economical & Durable

Amazecrete ICRETE: Making Concrete Economical & Durable

ICRETE offers many benefits apart from reducing cement content and giving high grades saving to ready-mix concrete companies; it helps reduce shrinkage and permeability in concrete slabs, increases the durability of concrete, and also works

Read more ...

UltraTech Cement & Coolbrook’s RotoDynamic HeaterTM Technology

UltraTech Cement & Coolbrook’s RotoDynamic HeaterTM Technology

UltraTech Cement Limited, India’s largest cement and ready-mix concrete (RMC) company, and Coolbrook, a transformational technology and engineering company, will jointly develop a project to implement Coolbrook’s RotoDynamic HeaterTM (RDH)

Read more ...

Plastic Shrinkage and Cracks in Concrete

Plastic Shrinkage and Cracks in Concrete

Plastic shrinkage cracking occurs when fresh concrete is subjected to a very rapid loss of moisture. It is caused by a combination of factors such as air and concrete temperature, relative humidity, and wind velocity at the surface of concrete. These can cause

Read more ...

Dam Rehabilitation With Cutoff Wall for Seepage Control

Dam Rehabilitation With Cutoff Wall for Seepage Control

This paper covers the research work carried out on cement plastering process for internal and external building wall by using spray plastering machine. Objective of study is to experiment and compare the plastering activity by conventional way and

Read more ...

Construction Defects Investigation & Remedies

Construction Defects Investigation & Remedies

In recent years, the speed of construction has increased very fast; buildings which used to take 3-5 years are now getting completed in 1-2 years. There is a race to complete projects faster, but due to this speedy construction, the quality of construction is often

Read more ...

Challenges in usage of Hydrogen in Cement Industry

Challenges in usage of Hydrogen in Cement Industry

With its zero-emission characteristics, hydrogen has become a promising decarbonization path for the cement industry. While there are several issues that need to be resolved in the use of hydrogen, there are also many advantages, so much so that the growth

Read more ...

Enhancing Corrosion Resistance of Steel Bars in Reinforced Concrete Structures

Enhancing Corrosion Resistance of Steel Bars in Reinforced Concrete Structures

Reinforced concrete is a composite material which is made using concrete and steel bars. Concrete takes the compressive forces and steel bar takes tensile forces. Concrete around the steel bar protects it from corrosion by providing an alkaline environment

Read more ...

Moving toward workability retention to rheology retention with low viscosity concrete technology

Moving toward workability retention to rheology retention with low viscosity concrete technology

Amol Patil, Sr. Specialist - General Manager (Admixture and Specialty Products), Master Builders Solutions (India), and Nilotpol KAR, Managing Director, Master Builders Solutions (South Asia), present a paper on the concept of low viscosity concrete in

Read more ...

Cement industry innovating eco-friendly packaging

Cement industry innovating eco-friendly packaging

Cement companies are constantly innovating to meet global sustainability standards and improve logistics, shelf life, and utility of cement, while reducing wastage. Thei aim is to reduce their environmental impact without compromising their product

Read more ...

To get latest updates on whatsapp, Save +91 93545 87773 and send us a 'Saved' message
Click Here to Subscribe to Our eNewsletter.